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Avenue de Paul Alduy, 66860 Perpignan Cedex, France
2 Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland
3 Institute of Radio Engineering and Electronics, Russian Acad. Sci., Vvedenskii Square 1,
Fryazino 141190, Russia

Received 27 October 2007, in final form 28 January 2008
Published 26 February 2008
Online at stacks.iop.org/JPhysA/41/105302

Abstract
The equilibrium quasiprobability density function W(ϑ, ϕ) of spin orientations
in a representation (phase) space of the polar and azimuthal angles (ϑ, ϕ)

(analogous to the Wigner distribution for translational motion of a particle)
is given by a finite series of spherical harmonics in the spin number and
their associated statistical moments so allowing one to calculate W(ϑ, ϕ) for
an arbitrary spin system in the equilibrium state described by the canonical
distribution ρ̂ = e−βĤ S /Tr(e−βĤ S ). The system with Hamiltonian Ĥ S =
−γ h̄H · Ŝ−BŜ2

Z is treated as a particular example (γ is the gyromagnetic ratio,
h̄ is Planck’s constant, H represents an external magnetic field and B represents
an internal field parameter). For a uniaxial system with Ĥ S = −γ h̄H ŜZ−BŜ2

Z ,
the solution may be given in the closed form.

PACS numbers: 03.65.Yz, 75.10.Jm

(Some figures in this article are in colour only in the electronic version)

The phase space representation of the density matrix extensively used in quantum optics
(see, e.g., [1–2]) when applied to spin systems [3, 4] allows one to describe quantum spin
problems in terms of a quasiprobability density function W(ϑ, ϕ) of spin orientations in a
phase (here configuration) or representation space (ϑ, ϕ); ϑ and ϕ are the polar and azimuthal
angles, respectively, constituting the canonical variables. The advantage of such a mapping
of the density matrix onto a c-number quasiprobability density function is that one may
determine how W(ϑ, ϕ) evolves as a function of the spin. This is of particular interest in
the study of molecular nanomagnets [5]. Moreover, the distribution function reduces to the
Boltzmann distribution of orientations in the classical limit. The quasiprobability density
W(ϑ, ϕ) was originally introduced by Stratonovich [6] as part of a general discussion of
c-number quasiprobability distributions for quantum systems in representation space based
on the symmetry properties of the underlying group. Examples are the Heisenberg–Weyl
group for particles and the SU(2) group for rotations. Phase space representations for spin
operators have been discussed in detail in [7–14]. The formulation of quantum mechanics [13]
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in terms of phase space functions instead of Hilbert space states and operators allows quantum
mechanical expectation values to be evaluated in terms of phase space integrals just as classical
averages. Thus, it is eminently suited to the calculation of quantum corrections to the classical
expectation values. This is accomplished [13] via the Stratonovich–Weyl correspondence
stemming in Stratonovich’s formulation, from a linear bijective mapping between operators
on the Hilbert space and functions in a representation space which is classically meaningful
(e.g., classical phase space or the space of orientations [14]). Phase space methods which
were first introduced into quantum mechanics by Wigner [15] contain only those features
common to both classical and quantum mechanics and in general they reformulate quantum
mechanics as a statistical theory on the representation space, a procedure known as the Moyal
quantization [16].

By the way of background, we remark that Wigner [15] originally arrived at his
quasiprobability density W(x, p) for translational motion of a particle in the phase space
(x, p), which is the quasiprobability representation of the density operator simply by requiring
that, the marginal distributions of W(x, p) should yield the correct quantum mechanical
probability densities for the position x and momentum p of the particle with Hamiltonian
Ĥ = p̂2/2m + V (x̂) in phase space. He thus established a one-to-one correspondence
[17] between the quantum state |ψ〉 in the particle Hilbert space and a real phase space
function W(x, p) which is also called the Wigner transform. The Moyal quantization is
so called because Moyal [16] discovered by introducing a characteristic function operator
M̂(τ, θ) = exp[i(τ p̂ + θx̂)] of the position and momentum that the Weyl correspondence
rule between c-numbers and operators can be inverted via the Wigner transform from an
operator on the Hilbert space to a function in the phase space. Stratonovich [6] on the
other hand in attempting to generalize the Moyal quantization to spins governed by the
SU(2) rotation group (the quasiprobability density function W(ϑ, ϕ) is entirely analogous
to W(x, p) for the Heisenberg–Weyl group except that certain differences arise because of
the angular momentum commutation relations [6]) discovered a linear bijective mapping
[cf equation (1)–(3) of [6] between operators on the Hilbert space and functions in the
representation space. This mapping [14] satisfies a number of physically intuitive properties,
covariance and tracing being the two most important, and essentially replaces Moyal’s
characteristic function operator. Thus, representation space distributions can be determined
via this bijective map from the general definition of a representation distribution using the
symmetry properties of the underlying group.

Up to the present, however, phase space methods for spins have been mainly applied in
quantum optics and very little attention has been paid to other spin systems. For example,
explicit equations for the equilibrium distribution W(ϑ, ϕ) have been given only for a spin S
in a uniform magnetic field H [3]. Here by applying the phase space formalism [6–14], we
present a general approach to the calculation of the phase space distributions W(ϑ, ϕ) for spin
systems with equilibrium states described by the canonical density matrix ρ̂ given by

ρ̂ = e−βĤ S /ZS, (1)

where ZS = Tr{e−βĤ S } is the partition function for an arbitrary Hamiltonian Ĥ S . In view
of the importance of the uniaxial anisotropy potential in applications to magnetism, quantum
optics, etc (see, e.g., [18–22]), we shall illustrate this approach by evaluating W(ϑ, ϕ) for a
uniaxial paramagnet of an arbitrary spin value S in an external constant field H so that the
Hamiltonian is

βĤ S = −ξ(γXŜX + γY ŜY + γZŜZ) − σ Ŝ2
Z, (2)

where γX, γY , γZ are the direction cosines of the field H, σ and ξ are the dimensionless internal
and external field parameters, respectively and β = 1/(kT ) is the inverse thermal energy.
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The phase space distribution function W(s)(ϑ, ϕ) on the surface of the unit sphere for a
spin system given by Stratonovich [6] (see also [14]) is given by

W(s)(ϑ, ϕ) = Tr{ρ̂ŵs(ϑ, ϕ)}, (3)

where s parameterizes quasiprobability functions of spins belonging to the SU(2) dynamical
symmetry group such as considered here, ŵs(ϑ, ϕ) is the Wigner–Stratonovich operator (or
kernel) defined as [14]

ŵs(ϑ, ϕ) =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
C

S,S
S,S,L,0

)−s
Y ∗

L,M(ϑ, ϕ)T̂
(S)
L,M (4)

such that [cf equations (3) and (6) of [6] Tr{ŵs(ϑ, ϕ)} = 1,

2S + 1

4π

∫
θ,ϕ

W(s) d� = 1, and
2S + 1

4π

∫
θ,ϕ

ŵs d� = Î

where d� = sin ϑ dϑ dϕ, the asterisk denotes the complex conjugate and Î is the identity
matrix. Here, YL,M(ϑ, ϕ) are the spherical harmonics [23], T̂

(S)
L,M are the irreducible tensor

(polarization) operators with matrix elements given by [23]

[
T̂

(S)
L,M

]
m′,m =

√
2L + 1

2S + 1
C

S,m′
S,m,L,M, (5)

and C
S,S
S,S,L,0 and C

S,m′
S,m,L,M are the Clebsch–Gordan coefficients [23]. The function W(−s)(ϑ, ϕ)

now allows us to calculate the average value 〈Â〉 = Tr{ρ̂Â} of an arbitrary spin operator Â

because the W(−s)(ϑ, ϕ) provides the overlap relation [6]

〈Â〉 = 2S + 1

4π

∫
θ,ϕ

As(ϑ, ϕ)W(−s)(ϑ, ϕ) d�, (6)

where As(ϑ, ϕ) = Tr{Âŵs(ϑ, ϕ)} is the Weyl symbol of the operator Â (see, e.g., [16]).
The parameter values s = 0 and s = ±1 correspond to the Stratonovich [6] and Berezin
[9] contravariant and covariant functions, respectively (the latter are directly related to the
P- and Q-symbols which appear naturally in the coherent state representation; see [11] for a
review). Here we consider W(−1)(ϑ, ϕ) only; thus we omit everywhere the superscript −1
in W(−1)(ϑ, ϕ) (W(1)(ϑ, ϕ) and W(0)(ϑ, ϕ) can be treated in like manner). We have chosen
W(−1)(ϑ, ϕ) because this distribution alone satisfies the nonnegativivity condition required of
a true probability density function, namely, W(−1)(ϑ, ϕ) � 0. The quasiprobability densities
W(1)(ϑ, ϕ) and W(0)(ϑ, ϕ) violate this condition because they may take on negative values in
the present problem.

In order to proceed, we first recall that the spin density matrix ρ̂ is represented by a
(2S + 1) × (2S + 1) square matrix [23]. The Hermitian (ρ̂ = ρ̂†) and normalized (Tr ρ̂ = 1)
density matrix ρ̂ may be expanded as a sum of the polarization operators T̂

(S)
L,M , namely [23],

ρ̂ =
2S∑

L=0

L∑
M=−L

(−1)MaL,−MT̂
(S)
L,M, (7)

where the expansion coefficients aL,M (representing expectation values of T̂
(S)
L,M in a state

described by the density matrix ρ̂) are given by [23]

aL,M = 〈
T̂

(S)
L,M

〉= Tr
{
ρ̂T̂

(S)
L,M

}
. (8)

Substituting equations (7) and (4) into equation (3) and noting that Tr
{
T̂

(S)
L′,M ′ T̂

(S)
L,M

} =
(−1)M

′
δL′,LδM ′,−M , we have after some algebra the phase space distribution in Fourier series
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form which emphasizes the relationship with the representation of the associated classical
Boltzmann distribution in terms of spherical harmonics, namely,

W(ϑ, ϕ) =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

C
S,S
S,S,L,0aL,MY ∗

L,M(ϑ, ϕ). (9)

Equation (9) is a general result valid for an arbitrary spin system with equilibrium states
described by the canonical density matrix ρ̂ given by equation (1). The phase space distribution
from equation (9) is similar to that introduced by Agarwal et al [10, 24, 25], who explicitly
gave the distribution for atomic angular momentum Dicke states, coherent states and squeezed
states corresponding to a collection of two-level atoms. We shall show below how in the
present explicit series form equation (9) allows one to evaluate equilibrium distributions for
spins.

As an example of the application of equation (9), we calculate the Wigner function
of a spin system with the Hamiltonian Ĥ S given by equation (2). Noting that the
spin operators ŜX, ŜY and ŜZ can be expressed in terms of the polarization operators
T̂

(S)
1,M as [23] ŜX = a

[
T̂

(S)
1,−1 − T̂

(S)
1,1

]
, ŜY = ia

[
T̂

(S)
1,−1 + T̂

(S)
1,1

]
and ŜZ = √

2 aT̂
(S)

1,0 , where
a = √

S(S + 1)(2S + 1)/6, and using equation (5), we can (i) present the Hamiltonian Ĥ S

from equation (2) in the explicit matrix form, next (ii) evaluate numerically the density matrix
ρ̂ from equation (1), hence (iii) calculate the coefficients aL,M from equation (8); having
thus estimated aL,M , we can (iv) calculate the distribution W(ϑ, ϕ) from equation (9) for any
particular S. We remark that for the problem in question the matrix elements of Ĥ S can also
be given in a closed form without using the operators T̂

(S)
1,M , namely

[Ĥ S]m′,m = A(−)δm,m′+1 + A(+)δm,m′−1 − (σm2 + γZξm)δm,m′ ,

where A(±) = −(1/2)ξ(γX ± iγY )
√

(S ± m)(S ∓ m + 1). Results of the calculation of
βV (ϑ, ϕ) = const − ln W(ϑ, ϕ) (V (ϑ, ϕ) has the meaning of an ‘effective’ free energy
potential) are shown in figure 1 for various values of S and σ ′ = σS2 = 5, h = ξS/2σ = 0.2,
γZ = 1/2, γY = 0 and γX = √

3/2 (i.e., the field H is in the XZ plane and directed at an
angle π/3 to the Z-axis). The effective potential V (ϑ, ϕ) has two nonequivalent minima (the
second minimum at ϑ = π is masked in these plots) and one saddle point in the plane ϕ = 0;
the potential characteristics (such as the shape and barrier heights) strongly depend on S. In
the classical limit (S → ∞, ξS = const = ξ ′, σS2 = const = σ ′), the function V (ϑ, ϕ) tends
to the normalized classical free energy Vcl(ϑ, ϕ) given by

βVcl(ϑ, ϕ) = const − σ ′{cos2 ϑ + 2h[(γX cos ϕ + γY sin ϕ) sin ϑ + γZ cos ϑ]}, (10)

which is also shown in figure 1 for comparison.
As an example of how the general equation (9) can be considerably simplified when

the matrix elements ρm,m′ of the equilibrium spin density matrix ρ̂ = e−βĤ S /ZS are given
explicitly, we obtain the Wigner function of a system with Hamiltonian given by equation (2)
for the particular uniaxial case, γX = 0, γY = 0 and γZ = 1, namely, βĤ S = −ξ ŜZ − σ Ŝ2

Z ,
which is of importance in magnetic applications [18–20]. Here the density matrix ρ̂ is diagonal
with matrix elements ρm,m′ given by [18, 20]

ρm,m′ = δm,m′ eσm2+ξm/ZS, (11)

where ZS = ∑S
m=−S eσm2+ξm. The ρm,m′ can now be used to evaluate the coefficients aL,M as

[23]

aL,M =
√

2L + 1

2S + 1

S∑
m,m′=−S

C
S,m′
S,m,L,Mρm,m′ . (12)
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Figure 1. 3D plot of βV (ϑ, ϕ) for various values of S = 1, 2, 5 and S → ∞ (classical limit;
equation (10)).

Due to the symmetry about the Z-axis, the phase space distribution function W is
independent of the azimuthal angle ϕ so that equation (9) can be simplified to (noting equation
(12) and that YL,0(ϑ, ϕ) = √

(2L + 1)/4πPL(cos ϑ))

(S + 1/2)W(ϑ) =
2S∑

L=0

(L + 1/2) 〈PL〉PL(cos ϑ). (13)

Here 〈PL〉 = (S + 1/2)
∫ π

0 PL(cos ϑ)W(ϑ) sin ϑdϑ are the equilibrium values of the
Legendre polynomials PL given explicitly by

〈PL〉 = Z−1
S C

S,S
S,S,L,0

S∑
m=−S

C
S,m
S,m,L,0 eσm2+ξm. (14)

We remark that the statistical moment 〈P1〉 yields the average longitudinal component of
the spin

〈ŜZ〉 = (S + 1)〈P1〉 = (S + 1)〈cos ϑ〉 = Z−1
S

S∑
m=−S

m eσm2+ξm

which is in complete agreement with the known result for the equilibrium magnetization
for any S [20]. Here we have noted that the Weyl symbol for the operator ŜZ is
SZ(ϑ, ϕ) = Tr{ŜZŵ1(ϑ, ϕ)} = (S + 1) cos ϑ [14]. By using explicit equations for the
Legendre polynomials PL(cos ϑ) [26] in equation (13), we have closed form results, e.g., for
S = 1/2, 1, 3/2, 2, 5/2, etc.

W(ϑ) = eσ/4fξ (ϑ)/Z1/2,

W(ϑ) = eσ
[
f 2

ξ (ϑ) + (1/2)(e−σ − 1) sin2 ϑ
]/

Z1,

W(ϑ) = e9σ/4

Z3/2

[
f 3

ξ (ϑ) +
3

4
(e−2σ − 1)fξ (ϑ) sin2 ϑ

]
,

W(ϑ) = e4σ

Z2

[
f 4

ξ (ϑ) + (e−3σ − 1)f 2
ξ (ϑ) sin2 ϑ+

1

8
(3e−4σ − 4e−3σ + 1) sin4 ϑ

]
,
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W(ϑ) = e25σ/4

Z5/2

[
f 5

ξ (ϑ) +
5

4
(e−4σ − 1)f 3

ξ (ϑ) sin2 ϑ+
5

16
(2e−6σ − 3e−4σ + 1)fξ (ϑ) sin4 ϑ

]
,

where fξ (ϑ) = cosh(ξ/2)+ sinh(ξ/2) cos ϑ . For arbitrary S, the series in f
2(S−m)
ξ (ϑ) sin2m ϑ

for the distribution W(ϑ) can be written as

W(ϑ) = Z−1
S eS2σ

[S]∑
n=0

bnf
2(S−n)
ξ (ϑ) sin2n ϑ, (15)

where [S] means the whole part of S and the leading coefficients bn are

b0 = 1, b1 = (S/2)[e−(2S−1)σ − 1],

b2 = (S/16)[(2S − 1) e−4(S−1)σ − 4(S − 1) e−(2S−1)σ + 2S − 3] etc.

For σ = 0, i.e., for a spin in a uniform external magnetic field, when the Hamiltonian
becomes βĤ S = −ξ ŜZ , equation (13) reduces to the known results [3] (in our notation)

W(ϑ) = f 2S
ξ (ϑ)/ZS, (16)

where ZS = sinh[(S + 1/2)ξ ]/sinh(ξ/2). The distribution (16) is a quantum analogue of the
Boltzmann distribution for classical magnetic dipoles µ precessing in the magnetic field H
(the precession frequency ω0 being ω0 = γH ). It is also the spin analogue of the Wigner
function W(x, p) for a quantum Brownian oscillator of mass m and natural frequency ω0,
namely [27]

W(x, p) = Z′−1 e− m
h̄ω0

tanh βh̄ω0
2 (ω2

0x
2+p2/m2)

,

where Z′ = πh̄ coth(βh̄ω0/2).
The distribution W(ϑ) is shown in figure 2 as a function of the polar angle ϑ . The maxima

of W(ϑ) occur at ϑ = 0 and ϑ = π and are given by

W(0) = Z−1
S eSξ+S2σ and W(π) = Z−1

S e−Sξ+S2σ ,

respectively, meaning classically that the spins are concentrated at the bottom of the wells,
where the minima of the potential energy occur. In the classical limit, namely,

S → ∞, σ → 0, ξ → 0, σS2 = const = σ ′, ξS = const = ξ ′,

W(ϑ) from equation (13) tends to the Boltzmann distribution, i.e.,

(S + 1/2)W(ϑ) → Z−1
cl eξ ′ cos ϑ+σ ′ cos2 ϑ , (17)

where Zcl = ∫ π

0 eξ ′ cos ϑ+σ ′ cos2 ϑ sin ϑ dϑ is the classical partition function. As one can see
in figure 2(a), the deviations of the quantum distribution (S + 1/2) W(ϑ) from the classical
Boltzmann distribution equation (17) are pronounced only for small spin numbers S < 10. As
S increases, the distribution (S + 1/2)W(ϑ) becomes very close to the Boltzmann distribution
equation (17) (e.g, for S = 20, the differences between the two distributions do not exceed
10 per cent; see the curve 5 in figure 2(a)). Due to the biasing effect of the external field, the
maxima are unequal in height. In the low temperature limit, where the dynamics of the spin in
the vicinity of the maxima ϑ = 0 and ϑ = π comprise a precession in the effective magnetic
field H± = (βγ h̄)−1 [±ξ + (2S − 1)σ ], W(ϑ) can be approximated as

W(ϑ) ≈ Z−1
S e−σS(S−1)f 2S

ξ±(2S−1)σ (ϑ),

(
ϑ � 1

π − ϑ � 1

)
. (18)

As seen in figure 2(b), the ‘oscillator’ function f from equation (16) describes with a very
high degree of accuracy the behavior of W(ϑ) near ϑ = 0 and ϑ = π .
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(ϑ

)

ϑ0

1
1: S =2 ( )
2: S =10 (+)

σ ′ = 5, ξ ′ = 0.5 

(a)

π

6
54

3

2

(S
+

1/
2)

 W
( ϑ

)

0

1

1: S =1/2 ( )
2: S =1 (×)
3: S =2    (♦)
4: S =5    ( )
5: S =20  ( )
6: S →∞  ( )

σ ′ = 2
ξ ′ = 0.5 

(b)

Figure 2. (a) (S + 1/2) W(ϑ)versus ϑ for σ ′ = 2, ξ ′ = 0.5 and various values of S including
the classical limit, S → ∞, equation (17). (b) The distribution (S + 1/2) W(ϑ) (solid lines) for
σ ′ = 5, ξ ′ = 0.5, and S = 2 and 10. Crosses (×) and stars (∗): equation (18).

We have shown in this paper how the phase space method may be used to construct
equilibrium distribution functions in the configuration space of polar angles (ϑ , ϕ) (which
are now the canonical variables) for spin systems in the equilibrium state described by the
canonical distribution ρ̂ = e−βĤ S /ZS . The system with Hamiltonian Ĥ S = −γ h̄H · Ŝ −BŜ2

Z

has been treated as a particular example. However, other spin systems including those
with nonaxially symmetric Hamiltonians such as Ĥ S = −AŜ2

X − BŜ2
Z (a biaxial system),

Ĥ S = −C
(
Ŝ4

X + Ŝ4
Y + Ŝ4

Z

)
(a cubic system), etc can be treated in like manner. The Wigner

function may be represented using the Wigner–Stratonovich map as a Fourier series just as
the corresponding classical orientational distribution and transparently reduces to it in the
classical limit. Moreover, relevant quantum mechanical averages (such as the magnetization)
may be calculated in a manner analogous to the corresponding classical averages using the
Weyl symbol of the appropriate quantum operator (see equation (6)). The Wigner functions
can now be applied to important magnetic problems such as the estimation of the spin
dependence of the switching fields and hysteresis curves, which require only a knowledge
of equilibrium distributions. This fact is important particularly from an experimental point of
view as the transition between magnetic molecular cluster and single domain ferromagnetic
nanoparticle behavior is essentially demarcated via the hysteresis loops and the corresponding
switching fields [28]. Furthermore, these functions are important, in the interpretation of
quantum tunneling phenomena in ferromagnetic nanoparticles and molecular magnets (see,
e.g., [5, 28]) and also in the crossover region between reversal of the magnetization of these
particles by thermal agitation and reversal by macroscopic quantum tunneling which is of
current topical interest [18, 20, 28]. For instance, by analogy with the original classical
calculation of Néel [29], the simplest description of quantum effects in the magnetization
reversal time of a nanoparticle would be provided by the inverse escape rate from the wells of
the magnetocrystalline and external field potential as calculated by quantum transition state
theory (TST) [30, 31]. TST ignores the disturbance to the equilibrium distribution in the
wells created by the loss of the magnetization due to escape over the barrier and so involves
the equilibrium distribution only as that is assumed to prevail everywhere. However, the

7
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equilibrium quantum distribution is also essential in the inclusion of nonequilibrium effects
in the quantum escape rate. Now a quantum master equation describing the time evolution
of the quasiprobability density in the representation space is required in order to generalize
the classical escape rate calculations pioneered by Kramers [32] for point particles and by
Brown [33, 34] for single domain ferromagnetic particles using the Fokker–Planck equation.
The diffusion coefficients in that equation are calculated using Einstein’s imposition [35] of
the Maxwell–Boltzmann distribution as the equilibrium solution. Just as the Fokker–Planck
equation, by postulating [35, 36] in the quantum master equation, a Kramers–Moyal-like
expansion truncated at the second term for the collision term the diffusion coefficients may
be calculated by requiring that the equilibrium distribution in the representation space renders
the collision term zero. In the present context this has been illustrated for the particular case
of a spin in a uniform field in [37] indicating clearly how all the solution methods developed
for the classical Fokker–Planck equation carry over seamlessly to the quantum case just as
the corresponding solutions for particles [35, 36]. Yet another advantage of the phase space
representation is that via TST as corrected for spin size effects (which is readily apparent
from that representation), it is possible to predict the temperature dependence of the switching
fields and corresponding hysteresis loops within the limitations imposed by TST. This is likely
to be of interest in experiments seeking evidence for macroscopic quantum tunneling where
the temperature dependence of the loops is crucial as the loops are used [28] to demarcate
tunneling behavior from thermal agitation behavior.
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